Representations of a Free Group of Rank Two by Time-varying Mealy Automata
نویسندگان
چکیده
In the group theory various representations of free groups are used. A representation of a free group of rank two by the so-called time-varying Mealy automata over the changing alphabet is given. Two different constructions of such automata are presented.
منابع مشابه
The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is decidable
We prove that a semigroup generated by a reversible two-state Mealy automaton is either finite or free of rank 2. This fact leads to the decidability of finiteness for groups generated by two-state or two-letter invertible-reversible Mealy automata and to the decidability of freeness for semigroups generated by two-letter invertible-reversible Mealy automata.
متن کاملGroups and Semigroups Defined by Colorings of Synchronizing Automata
In this paper we combine the algebraic properties of Mealy machines generating self-similar groups and the combinatorial properties of the corresponding deterministic finite automata (DFA). In particular, we relate bounded automata to finitely generated synchronizing automata and characterize finite automata groups in terms of nilpotency of the corresponding DFA. Moreover, we present a decidabl...
متن کاملOn Torsion-Free Semigroups Generated by Invertible Reversible Mealy Automata
This paper addresses the torsion problem for a class of automaton semigroups, defined as semigroups of transformations induced by Mealy automata, aka letter-by-letter transducers with the same input and output alphabet. The torsion problem is undecidable for automaton semigroups in general, but is known to be solvable within the well-studied class of (semi)groups generated by invertible bounded...
متن کاملA Connected 3-State Reversible Mealy Automaton Cannot Generate an Infinite Burnside Group
The class of automaton groups is a rich source of the simplest examples of infinite Burnside groups. However, there are some classes of automata that do not contain such examples. For instance, all infinite Burnside automaton groups in the literature are generated by non reversible Mealy automata and it was recently shown that 2-state invertible-reversible Mealy automata cannot generate infinit...
متن کاملAn analogue to Dixon's theorem for automaton groups
Dixon’s famous theorem states that the group generated by two random permutations of a finite set is generically either the whole symmetric group or the alternating group. In the context of random generation of finite groups this means that it is hopeless to wish for a uniform distribution – or even a non-trivial one – by drawing random permutations and looking at the generated group. Mealy aut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006